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ABSTRACT 
 
In this paper, we investigate sensor fusion along three avenues: statistical, biological and 
categorical. The first two approaches are analyzed simultaneously to provide a precise 
and rigorous sensor fusion methodology. The statistical model currently enhances 
Bayesian methods for tracking, and suggests further application to target identification 
and fusion—involving both low level feature extraction and higher level sensor output 
combination. The biological model is also applied to multiple levels of the fusion 
problem. On the lowest level, it utilizes biologically-inspired results for improved feature 
extraction. On the higher levels, it develops biologically-inspired agency algorithms for 
sensor output combination and sensor network analysis. Ultimately, we model the entire 
fusion process with category theory. Category theory allows for the application of 
advanced mathematical theory to fusion analysis. In addition to using category theory as 
a modeling tool, in this paper we adapt categorical logic via topos theory to provide an 
advanced framework for decision fusion—initially using the topos of graphs. Graphs are 
a simpler representation. We suggest formulations which will be much richer—toward 
the goal of a truly robust, reliable and computationally practical sensor fusion system for 
assisted/automatic target recognition. 
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1.0 Introduction 
 
In this paper we attempt to develop a general model for sensor fusion—toward the goal of 
assisted/automatic target recognition (ATR). To accomplish this, we incorporate three strands into our 
plan. The first strand consists of methods based on biology. On the most primitive level, biological 
influence accounts for the basic choice of elementary feature extractors. On a higher level, biology 
inspires our study of agency for sensor networks. The second strand is statistical. Throughout our system, 
we plan to apply standard Bayesian methodology, particularly particle filters. Bayesian methods present 
an ideal way to approximate decisions in all levels of the fusion process “from the outside.”  
 
But we hope to push our model further. It is no secret that higher-level sensor fusion, ATR, and artificial 
intelligence in general have encountered significant difficulties over the last 40 years in truly and 
effectively modeling cognitive activity, as it occurs in individuals or in groups and networks. These 
difficulties can often be compensated for through vaster computational power—in effect, performing 
exhaustive searches over a representation space. But this solution can only be a temporary one. 
Increasingly, it has been accepted that there is a fundamental flaw in automated intelligent methods. We 
believe that that flaw stems from a lack of true subjectivity in machine learning. The question of whether 
that flaw can ever be overcome is unanswered, and an attempt to answer it is beyond the scope of this 
paper. However, our research aim is a methodology for optimally placing subjective elements in the 
system to address the flaw in artificial intelligence by “humans-in-the-loop.” This concept is not novel, 
but we advance it here by attempting to develop a theory of human/computer and human/network 
interaction and a modeling technique that maximizes the effectiveness of the system by minimizing the 
human element to where it is essential, to develop a theory of assisted target recognition to supplant failed 
automatic target recognition. As will be shown in due course, we try to achieve these aims through 
category theory. In the following sections, we will first describe the individual elements that will make up 
our system, then describe the system and relate the broader implications of our approach to sensor fusion. 
 
2.0 Biological and Statistical Methods 
 
We adapt biological methods at both lower and higher levels. At the lower level, biologically based filters 
are used as feature extractors. For one-dimensional signals, wavelet analysis is appropriate. However, in 
two dimensions, wavelets may not be the best feature extractor. We utilize filters based on the human 
visual cortex. Our first approach utilized Gabor analysis. But for computational reasons, we abandoned 
this method in favor of oriented ridgelets. Ridgelets are, in effect, two-dimensional filters which are 
wavelets in one dimension. Figure 1 shows representations of Gabor and ridgelet filters. 
 

 
Figure 1. Sample Gabor filter (left) and Ridgelet filter (right). 
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At a higher level, we adapt biology to sensor fusion through the use of agents. Agents have been a very 
active topic in computer science for several years. They have also regularly been used to model sensor 
networks. “An agent is anything that can be viewed as perceiving its environment through sensors and 
acting upon that environment through effectors.”1 The preceding is a satisfactory definition, but in reality 
there is no official definition of agent in computer science. Additionally, an agent is not required to be a 
physical entity (for example, a robot). A section of software can be an agent. An agent’s rationality is 
judged by how well it scores on some numerical performance measure. This is of course an external 
metric. An agent’s perceptual history, the record of every datum it has perceived, is its percept sequence, 
and the agent’s behavior is determined by a mapping or a function from the set of percept sequences to 
actions.   
  
Computer agents lack an essential ingredient for real agency—subjectivity. Still, computer models can 
impersonate the inferential process of a real agent. This impersonation is usually referred to as machine 
learning or artificial or computational intelligence. The inference step is often handled with Bayesian or 
other statistical methods. Unfortunately, humans don’t normally use Bayesian reasoning, although there is 
some evidence that if the problem is phrased in a form that brings out the Bayesian context, humans are 
more likely to reason in a Bayesian form. Very complicated group activity can be modeled by computer 
agents through achieving the outward appearance of inference and inductive reasoning in individual 
agents by careful mathematical processes. However, the learning and reasoning techniques for group 
agency are similar to the techniques used for individual agents. Figure 2 shows a rough diagram of our 
agency model, in 3 levels. 
  

 
Figure 2.  Sample agent diagram. 
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We have chosen particle filters as our prime statistical method, used in tracking. More generally, we will 
use Monte Carlo sampling generally for our statistical analysis as later we incorporate Bayesian classifiers 
into agents’ classifying schemes. First in the tracking case, state x at time t is updated according to a 
function of x and a weight function of x. Observed state y is a function of the true state x and a noise 
function: 
 
                                                                                                                                                                     (1) )(xw)(xfx t +=
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The weights are updated at each time step by multiplying by the conditional probability of the observation 
y given the true state x. This probability is estimated usually by the distance between the particles that 
make up the probability density of x and the observation: 
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Also, the weights are normalized at each time step: 
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Numerical classification is done via support vector machines (SVM). Support vector machines are not a 
statistical technique, but future work will involve including Bayesian classifiers (along with other 
classifiers) in the toolbox of agent classifiers. Solving a support vector machine consists of solving an 
optimization problem. Given a collection of labeled training data (xi,yi), i=1,2,...,n, yi ε {+1,−1}, xi ε Rd: 

 
minimize ½||w||2+CΣξi, 

                                                        subject to yi(wTφ(xi)+b)≥1−ξi, ξi≥0,                                                     (4)                         
 
where ξi represent slack variables, C is an error penalization parameter, and w and b define a linear 
regressor in the feature space (the range space of the function φ). Support vector machine projects data 
into a higher dimensional space where linearly separation between the data is possible. Then the 
hyperplane wTφ(xi)+b=0 is derived, maximizing the margin of separation. The hyperplane can be 
represented as: 

Σλiyiφ(xi)·φ(x)=0,                                                                                     
                                                                                           (5) 

where the λi are Lagrange multipliers. φ(xi)·φ(xj) is called the kernel function K(xi,xj).  
                          

3.0 Categorical Methods 
 
Category theory, higher category theory, and topos theory supply a suitable model for sensor networks.2,3 
Category theory views mathematical structures at a higher level of abstraction. Category theory is a way 
of doing mathematics emphasizing mappings more than objects, processes more than things. Its 
advantage over other modeling formalisms lies in its generality and extensive theory. Higher category 
theory expands category theory into higher dimensions, allowing higher levels of mappings. Topos theory 
was developed both through the application of category theory to logic and algebraic topology and 
algebraic geometry. We rely on Goldblatt for our descriptions of category theory and categorical logic.4

A category is a collection of: 1) arrows; 2) objects; 3) assignments to each arrow a domain (object O1) 
and a codomain (object O2) (Figure 3); 4) a composition operation for arrows that is associative (Figure 
4); and 5) an identity arrow (1o ) for each object (O) (Figure 3).  
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1o (identity arrow)

O 

a 
(arrow a maps object O1 to O2) 

O1 O2

Figure 3.  Diagram of domain and codomain (left), and identity arrow (right). 
                                                                                

 
Figure 4.  Diagram of associativity. 

O1 O2 O3 O4
ca b

c◦b◦a= (c◦b)◦a= c◦(b◦a) (arrows a,b, and c) 

 
An object O in category C is initial (terminal) if there is only one arrow from (to) O to (from) every object 
in C. A product of objects X and Y is an object X×Y and arrows from X×Y to X and Y such that for any 
object Z with arrows to X and Y there is only one arrow from Z to X×Y such that the following diagram 
commutes—different paths of arrows from one object to another produce equivalent mappings. (See 
Figure 5).  
 
 

 
Figure 5.  Diagram of product. 

Z 

X Y X×Y

                                       
 
 
Given arrows a and b from object X to Y, an equalizer is an arrow e to X such that a◦e=b◦e (Figure 6). 
 

 
Figure 6.  Diagram of equalizer. 
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A cone for a diagram is an object O and an arrow from O to each object in the diagram. O is a limit if for 
any other cone originating from object O’, there is exactly one arrow from O’ to O such that the following 
diagram (Figure 7) commutes. 
 

 
Figure 7.  Diagram of a cone. 

O’ O 

X Y Z 

                                                                     
Category theory can be applied to logic. Classical propositional logic consists of sentences a, b, that are 
evaluated as  
 
               TRUE=1={Ø}  (Ø is the null set; 1 is the set with the null set as its only element.)                   (6) 
 
or 
  

FALSE=0=Ø.                                                                                 (7) 

These sentences are combined with the following connectives: conjunction a∩b, disjunction aUb, 
negation ~a, and implication =>. The truth values for new combined sentences are given by the standard 
truth tables. In an axiomatic system, truth is instead assigned to a collection of primary sentences called 
axioms. New true sentences can then be built up through deductive rules. In the category of sets, the set  

2={0,1}={Ø,{Ø}}.                                                                        (8) 

Conjunction is the characteristic function of {<1,1>}, a subset of 2X2. Negation is the characteristic 
function of  

1={Ø},                                                                                           (9) 

 a subset of 2. Implication is the characteristic function of 

≤={<0,0>,<0,1>,<1,1>},                                                                 (10) 

a subset of 2X2. True is the map from {Ø} to {Ø,{Ø}} which takes 1 to 1,  

True(1)=1.                                                                                   (11) 

False is the map from {Ø} to {Ø,{Ø}} which takes 1 to 0,  

False(1)=0.                                                                         (12) 
In order to include decision fusion in our system, we utilize topos theory. A topos is a category that has: 
1) all finite limits; 2) exponentiation; 3) a subobject classifier. A category has all finite limits when all 
finite diagrams have a limit. Exponentiation and the subobject classifier can be illustrated through their 
set theoretical parallels. For set S, 2S is the set of mappings from S to {0,1}. For any subset s of S, the 
standard characteristic function is equivalent to the mapping of 2S which sends each element of s to 1 and 
each non-element to 0. Thus, 2 is the subobject classifier for the topos of sets. As will be shown, topos 
theory is a methodology for representing indeterminacy.5 A functor is a mapping between categories that 
preserves structure. Objects map to objects. Arrows map to arrows. The identity arrows and arrow 
composition are preserved. A contravariant functor is a functor that reverses the direction of arrows. It 
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maps domains to codomains and vice versa. A presheaf is a contravariant functor from a category to the 
category of sets. The category of presheaves over a category is a topos.  
 
A higher dimensional category is a category whose objects are the arrows of a category C, and the arrows 
are mappings between them.6 Figure 8 shows some examples of arrows in a 2-dimensional category. 
Higher categories can also have a chain of multiple arrows as a source (Figure 9). The process can be 
continued into higher dimensions (Figure 9).  
 

 
Figure 8.  2-Dimensional Categories. 

 
 

  
Figure 9. 2-dimensional category (left). In each case, the source is a sequence of arrows.  

3-dimensional category (right). The black 3-dimensional arrow has as source and target, the white 
2-dimensional arrows. 

 
Category theory has been applied to modeling agents, although not sensor agents. Di Marzo et al. have 
described a formalization of multi-agent systems in category theory.7 Although rudimentary, their ideas 
parallel some of our own, especially by suggesting topos theory as a model of indeterminacy. They 
describe categories of computational units, agents, services, and multi-agent systems. Functors are then 
defined between these categories. The robustness of category theory is that one can diagram one’s system 
in a multitude of ways and then have access to advanced mathematical tools to manipulate it. 
 
4.0 Putting it All Together 
 
Our agent model is at this point straightforward. We intend to later add greater sophistication. Its current 
purpose is to provide a modeling framework within which to develop our categorical system. Agents 
types are: sensor agents (basic fixed sensors—currently low level image processing takes place within the 
sensor agent, although we intend to test adding functionality with a general image processing agent type); 
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classifying agents (mobile agents which visit the individual sensors, apply their respective classifying 
algorithms, and report to a higher level—currently the only differences between individual classifying 
agents are the parameters of their SVMs, but later we intend to include a vast diversity of classifiers); 
coordinating agents (these agents are assigned groups of sensors to monitor—they receive input from the 
classifying agents but can also access raw data from the sensor agents when necessary); and decision 
agents (these agents receive information from the coordinating agents, assign tasks to the coordinating 
agents, and report their decisions to the human monitor—currently tracking is done at this level, but we 
are experimenting with incorporating the tracking algorithm into other types of agents). The human 
monitor is the pinnacle of the system. He/she has access to all agent activity but generally deals with the 
decision agents while referring upon possible target identification to the sensor agents. The human 
monitor adds the vital element of subjectivity, making it a symbiotic subjective system. As an interesting 
aside, it could be possible with the success of the current research to supplant the human monitor with an 
animal in some situations. Figure 10 depicts a diagram the system.  
 

 
Figure 10.  Diagram of the agent system. (figure at center represents “human in the loop.”) 

sensor agent 

decision agent 

coordinating 
agent coordinating 

agent 
 

sensor agent 

sensor agent 

sensor agent 

classifying 
agent 

sensor agent 

decision agent 

coordinating 
agent coordinating 

agent 
 

sensor agent 

sensor agent 

sensor agent 

classifying 
agent 

 
Currently, agents interact through a simple blackboard system. Each agent has a multi-sheet spreadsheet 
file that it writes to. Agents gain information through accessing other agents’ files. So in fact, a mobile 
agent’s movement consists solely of reading successive files. A sensor-agent’s sensor input is written as a 
multi-dimensional matrix on the spreadsheet. Functions exist for manipulating data, reading spreadsheets, 
performing classifications, and fusing data and classifications. For the sensor agents, these functions 
include feature extraction with the biologically-based filters. Each agent is assigned a type, and each 
function’s input requires a specific type, but otherwise no protocol exists for restricting permission to 
access agent files. Of course, permissions will be added as the system evolves. Classifiers are presently 
strictly SVMs with various parameter formulations, although this too will be expanded to include 
Bayesian and other numerical classifiers—but also logical classifiers. The value of category theory is that 
it enables fusion of these disparate types of information. 
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We currently have defined two categories in our system. First, we have a category of agents, with 
subcategories for each agent type: classifying, sensor, coordinating, and decision. Each individual agent is 
an object of a category. The arrows are the functions between agents. Second, we have a process 
category, whose objects are the agent functions but also the image processing operations and the 
classifying and fusion operations—which correspond to an object with an arrow leading back to itself. 
These separate operations can be considered subcategories. With both agents and processes, it has not yet 
been fully determined to what degree we will work with the subcategories as separate categories or 
subsume them under the general categories. Note that the processes category is in fact, a 2-dimensional 
category.  
 
Graph theory adapts well to the study of sensor networks. It also generalizes easily into category theory, 
with nodes in a directed graph corresponding to objects in a category and directed edges corresponding to 
arrows between the objects. We use the graph theoretical formulation of sensor networks. However, in 
order to apply topos theory, we work with the topos of graphs,8 which is a presheaf topos. Here a topos 
consists of a base space, objects projecting on to the base space (individual directed graphs), and a 
subobject classifier. The base space is the category with objects (Nodes and Arcs) and arrows (Source and 
Target), Ns,t→A, with a Source arrow from N to A if node N is the source of arc A and a Target arrow if 
node N is the target of arc A. Then any directed graph (object in the topos) is a projection onto the base 
space (Figure 11). For any subgraph of that graph, the subobject classifier determines membership in the 
subobject, in other words, the “truth” of membership in the subobject is not either/or. The logic of a 
presheaf topos is not necessarily Boolean. The law of the excluded middle might not apply. This is how 
topos theory models indeterminacy. 
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Figure 11.  Sample graph over base space. 
Note: Membership in the subgraph (enclosed by dotted line) is determined by mappings into the subobject classifier. Nodes
inside the subobject map to Node 1 (true)—that outside map to Node 0 (false). Arcs map to various arcs of the subobject
classifier depending on whether they are inside or outside (or neither) of the subobject. 

This methodology can be applied to sensor fusion in two ways. The first begins with an individual sensor 
agent. Feature extractions are the presheaves, and the subobject classifier is the classifying agent, as 
illustrated in Figure 12. Another method would apply the theory to the entire sensor network, with 
presheaves identified as individual sensor network configurations over the sensor network base space. 
This second method is, in effect, applying higher category theory to the problem. Fusion is then modeled 
in our system by pullbacks (a type of product).9

 

Combined Statistical, Biological and Categorical Models for Sensor Fusion 9



 
sensor agent 

feature 2 feature 1 feature 3 

classifying agent 

Figure 12. Simple Sensor Fusion Topos Model. 
 
 
5.0 Conclusion 
 
In this paper, we have devised a system, in fact a test bed, for representing sensor fusion and conducting 
sensor fusion experiments. We have adapted state of the art lower level fusion techniques and combined 
them with agent models and category theory. We are confident that agency within the category theory 
framework prove fruitful in amalgamating diverse sensors and sensor modalities—and both various 
numerical and logical classifiers. In addition, with topos theory we have shown a path toward effectively 
formalizing the decision process, and optimizing the placement of humans in the system—all toward 
creating a hybrid, subjective, sensor network. 
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